
PWN Finance Cairo
Security Review Report

January 27, 2025

Version 1.0

Email Telephone

audits@extropy.io +44 1865338228

Data Classification Client Confidential

Client Name PWN

Document Title PWN Finance Cairo Security Review Report

Document Version 1.0

Author Extropy Audit Team

PWN Finance Cairo

Security Review Report

Contents

1 Executive Summary 1

2 Audit summary 2

2.1 Audit scope . 2

2.2 Issues Summary . 3

2.3 Methodology . 4

2.4 Approach . 4

2.5 Audit Notes . 4

3 Findings 6

3.1 [HIGH] Merkle data conversion skips bytes wrongly . 6

3.2 [MEDIUM] Proper management of accounts with privileges 6

3.3 [MEDIUM] Usage of rebase tokens may alter the normal functioning of the protocol . . . 7

3.4 [LOW] Possibly empty reference contracts in simple loan . 8

3.5 [LOW] LOAN token receiver may be not able to handle tokens 8

3.6 [LOW] Prevent protocol functionality by accepting loans immediately 9

3.7 [LOW] Possibility to pollute a loan with dummy extension proposals 9

3.8 [LOW] Missing checks on ‘credit amount‘ and ‘available credit limit‘ 10

3.9 [LOW] ‘proposal data.len()‘ is only checked in fungible and dutch proposal types 11

3.10 [LOW] ‘MAX ACCRUING INTEREST APR‘ doesn’t match the Solidity constant 11

3.11 [LOW] Possibility to pollute the protocol with dummy proposals 12

3.12 [LOW] Usage of OZ version with known issues . 12

3.13 [LOW] Span decomposition is missing checks in serialization 12

3.14 [INFO] Optimize gas usage for loan minting . 13

3.15 [INFO] Duplicate code in loan token URI . 14

3.16 [INFO] Typos in code . 14

3.17 [INFO] Enumerate loan status options . 15

3.18 [INFO] Functions that could be replaced by a multicall . 15

3.19 [INFO] Documentation is inconsistent with the code . 15

3.20 [INFO] Unneeded access tag parameter . 16

3.21 [INFO] Missing unsupported category checks . 17

3.22 [INFO] Functions that do not change the contract state are not marked as view 17

3.23 [INFO] ‘IERC721 METADATA ID‘ interface not registered . 17

3.24 [INFO] Use default address . 18

3.25 [INFO] Duplicate Event Emission in PWNHub ‘set tags‘ Function 19

3.26 [INFO] Accruing interest calculation uses a magic number 19

3.27 [INFO] Unneeded use of initializers . 20

3.28 [INFO] Math multiplication may panic . 20

3.29 [INFO] ‘abi encoded packed()‘ never used in the codebase 20

3.30 [INFO] Add comments on how hashes are formed . 21

3.31 [INFO] Lock used library versions . 22

3.32 [INFO] Inconsistent documentation related to ERC721 token ownership 22

4 Test Coverage 23

4.1 Solidity tests . 23

Page 2

A Disclaimers 39

A.1 Client Confidentiality . 39

A.2 Proprietary Information . 39

PWN Finance Cairo

Security Review Report

1 | Executive Summary

Extropy was contracted to conduct an initial code review and vulnerability assessment of the PWN

protocol written in Cairo for the Starknet ecosystem.

The Solidity version of the protocol was already audited by Extropy in May 2024. There are small

differences between the Cairo codebases due to the lack of the try-catch construct in the Cairo version

currently in use highlighted in the section ”2.5 - Audit Notes”.

PWN Finance is a decentralized lending protocol that allows users to create new loan proposals: the

proposer can either offer credit or request it by creating a proposal which is then subsequently accepted

by another user called the acceptor (who is responsible to check the related proposal terms before

accepting). Depending on the type of proposal (whether it is an offer or not) proposer and acceptor are

also identified as lender and borrower.

There are four types of proposals: Simple, which defines a single specific collateral loan; List, which

defines a list of acceptable collateral ids or a whole collection; Fungible, which is not tied to a specific

collateral or credit amount: it’s specified during the proposal acceptance; Dutch, where the collateral

amount is fixed while the credit amount change over time while the dutch auction runs.

When a proposal is accepted, a Loan is created and the lender receives an ERC721 token that represents

its credit. A loan can be repaid by the borrower paying the interests, if any. If a running loan is not payed

back before the timestamp specified by the proposer, or an extension is requested on time for it, it goes

into a defaulted state and the borrower loses his collateral.

Overall the protocol is well designed, the code is of high quality and there is evidence of extensive test

coverage, using unit tests and integration tests

Section 3 details the findings, where possible we have given recommendations for their resolution.

Page 1

PWN Finance Cairo

Security Review Report

2 | Audit summary

This audit, conducted from December 2nd 2024 to January 3rd 2025, employed a comprehensive

approach using manual review method. Our examination aimed to ensure the robustness and security

of the PWN Finance protocol on the Starknet ecosystem.

■ The code is taken from the pwn-starknet repository.

■ The audit was performed on commit 02b82af8eef699e9999dc4890dc979f75ea930ec.

2.1 | Audit scope

The following contracts were audited:

Contract LoC

config/interface.cairo 29

config/pwn config.cairo 406

hub/pwn hub tags.cairo 3

hub/pwn hub.cairo 171

interfaces/fingerprint computer.cairo 9

interfaces/pool adapter.cairo 19

interfaces/erc5646.cairo 6

loan/lib/fee calculator.cairo 29

loan/lib/math.cairo 26

loan/lib/serialization.cairo 116

loan/lib/merkle proof.cairo 218

loan/terms/simple/loans/error.cairo 75

loan/terms/simple/loans/interface.cairo 36

loan/terms/simple/loans/types.cairo 130

loan/terms/simple/loans/pwn simple loan.cairo 1070

loan/terms/simple/proposal/simple loan fungible proposal.cairo 513

loan/terms/simple/proposal/simple loan proposal.cairo 343

loan/terms/simple/proposal/simple loan list proposal.cairo 463

loan/terms/simple/proposal/simple loan simple proposal.cairo 368

loan/terms/simple/proposal/simple loan dutch auction proposal.cairo 597

loan/token/pwn loan.cairo 275

loan/vault/pwn vault.cairo 232

multitoken/category registry.cairo 175

multitoken/library.cairo 533

nonce/revoked nonce.cairo 324

lib.cairo 76

Total 6242

Page 2

https://github.com/NethermindEth/pwn-starknet/tree/02b82af8eef699e9999dc4890dc979f75ea930ec
https://github.com/NethermindEth/pwn-starknet/tree/02b82af8eef699e9999dc4890dc979f75ea930ec

PWN Finance Cairo

Security Review Report

2.2 | Issues Summary

ID Finding Status

3.1 [HIGH] Merkle data conversion skips bytes wrongly Resolved

3.2 [MEDIUM] Proper management of accounts with privileges Acknowledged

3.3 [MEDIUM] Usage of rebase tokens may alter the normal function-

ing of the protocol

Acknowledged

3.4 [LOW] Possibly empty reference contracts in simple loan Acknowledged

3.5 [LOW] LOAN token receiver may be not able to handle tokens Acknowledged

3.6 [LOW] Prevent protocol functionality by accepting loans imme-

diately

Acknowledged

3.7 [LOW] Possibility to pollute a loan with dummy extension pro-

posals

Resolved

3.8 [LOW] Missing checks on ‘credit amount‘ and ‘avail-

able credit limit‘

Acknowledged

3.9 [LOW] ‘proposal data.len()‘ is only checked in fungible and dutch

proposal types

Partially resolved

3.10 [LOW] ‘MAX ACCRUING INTEREST APR‘ doesn’t match the So-

lidity constant

Resolved

3.11 [LOW] Possibility to pollute the protocol with dummy proposals Acknowledged

3.12 [LOW] Usage of OZ version with known issues Acknowledged

3.13 [LOW] Span decomposition is missing checks in serialization Resolved

3.14 [INFO] Optimize gas usage for loan minting Resolved

3.15 [INFO] Duplicate code in loan token URI Resolved

3.16 [INFO] Typos in code Resolved

3.17 [INFO] Enumerate loan status options Acknowledged

3.18 [INFO] Functions that could be replaced by a multicall Resolved

3.19 [INFO] Documentation is inconsistent with the code Resolved

3.20 [INFO] Unneeded access tag parameter Acknowledged

3.21 [INFO] Missing unsupported category checks Resolved

3.22 [INFO] Functions that do not change the contract state are not

marked as view

Resolved

3.23 [INFO] ‘IERC721 METADATA ID‘ interface not registered Resolved

3.24 [INFO] Use default address Resolved

3.25 [INFO] Duplicate Event Emission in PWNHub ‘set tags‘ Function Resolved

3.26 [INFO] Accruing interest calculation uses a magic number Resolved

3.27 [INFO] Unneeded use of initializers Partially resolved

3.28 [INFO] Math multiplication may panic Resolved

3.29 [INFO] ‘abi encoded packed()‘ never used in the codebase Resolved

3.30 [INFO] Add comments on how hashes are formed Resolved

3.31 [INFO] Lock used library versions Resolved

3.32 [INFO] Inconsistent documentation related to ERC721 token own-

ership

Resolved

Page 3

PWN Finance Cairo

Security Review Report

2.3 | Methodology

2.3.1 | Risk Rating

The risk rating given for issues follows the standard approach of the OWASP Foundation. We combine

two factors :

■ Likelihood of exploit

■ Impact of Exploit

The Categories we use are Critical, High, Medium, Low and Informational These categories may not

align with the categories used by other companies.

The informational category is used to contain suggestions for optimisation (where this is not seen as

causing significant impact), or for alternative design or best practices.

2.4 | Approach

The project was assessed mainly by code inspection, with auditors working independently or together,

looking for possible exploits. Tests were written were possible to validate the issues found. Manual

code inspection techniques were primarily used due to the lack of Static analysis tools for the Starknet

ecosystem.

2.5 | Audit Notes

As the current audited codebase is the Starknet version of the Solidity codebase of the protocol audited

by Extropy in May 2024, small differences between those two codebases can be highlighted, mainly due

to the lack of the try-catch construct in Cairo. Those will be enabled in the future when the try-catch

will be added to the Cairo syntax:

■ The refinancing functionality. Currently when a user tries to refinance a loan using ‘create loan()‘

in ‘pwn simple loan‘ specifying in input a ‘caller spec.refinancing loan id‘ different than zero, an

error will be thrown instead of the ”original” Solidity flow. As a future note, we highlight also

that the order of execution of the operations done when refinancing loans may differ from the

original codebase: indeed the function ‘ update repaid loan()‘ is executed in a different point of

‘create loan()‘ compared with the solidity version of the protcol and this flow was not analyzed in

this audit.

■ The auto claim functionality is not available at the moment. Currently the payed back credit goes

first to the Vault and only then the owner of the related Loan Token is able to claim it.

Some additional notes:

■ Since several contracts in the codebase are upgradeable, the same variable names must be kept

during upgrades over time since their hash is used to compute the contract storage slots. Changing

just one of them can have dangerous consequences on the related contract and on the whole

protocol after the upgrade.

■ There is no more multiproposal mechanism: on solidity one can create in one transaction several

loan proposal, store their data in a merkle tree and sign the root. This is not present in the current

Cairo codebase since multicall can be used

■ Within the solidity codebase there are two ways of making proposals: on chain (just storing the

proposal hash) or off chain (where you create a proposal off-chain and then provide on chain the

data and the signature related to what the proposer proposed off chain). On Starknet instead there

Page 4

https://github.com/OpenZeppelin/cairo-contracts/blob/release-v0.14.0/src/account/account.cairo#L92

PWN Finance Cairo

Security Review Report

is only the ”on-chain mechanism” of making proposals, so it may be considered to removing nonce

functionality related to proposal invalidation, and replace that with simply deleting proposals or

marking them deleted. Please note that nonces are also used to distinguish otherwise identical

proposals and for extension proposals. In the end not all nonces could be ditched but refactoring

the nonce mechanism somewhat on the Cairo codebase can make sense.

■ The protocol relies on users to know what kind of tokens they use (for credit and collateral) and

whether they’re reliable (e.g. collateral may lose value over time) since prices are not relevant for

the protocol.

Page 5

PWN Finance Cairo

Security Review Report

3 | Findings

3.1 | [HIGH] Merkle data conversion skips bytes wrongly

■ Location(s): merkle proof.cairo#45

■ Description: The function u256 to be bytes() includes logic to truncate zero bytes from the start,

to pack the data. However, the logic at line 45 actually removes any zero bytes - also from the

middle and end.

while bytes

.len() > 0 {

let byte = bytes.pop_front().expect('u256_to_be_bytes');

if byte != 0 {

significant_bytes.append(byte);

};

};

An example: byte vectors [12, 00, 34, 56, 00, 00] and [00, 12, 34, 00, 56] both result in [12, 34, 56].

This problem can be abused in simple loan list proposal.accept proposal() when a Merkle

proof is utilized to check that the offered collateral ID is part of the list of accepted collateral IDs.:

the merkle inclusion proof can be faked. Therefore, an attacker can utilize a worthless collateral

ID for a loan, let the loan default and just lose his worthless token.

■ Recommendation: Consider fixing the implementation so only leading zeroes are removed in

u256 to be bytes()

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 7b8d1d1

3.2 | [MEDIUM] Proper management of accounts with privileges

■ Location(s): -

■ Description: Several contracts give extra power to owner address or to addresses with a certain

tag (such as NONCE MANAGER).

■ Recommendation: Make sure that accesses to the accounts with privileges are secure. Consider

using a multisig2 contract for sensitive roles.

■ Status: Acknowledged.

■ Updates:

□ [Extropy, 27/01/2025]: Acknowledged the issue and stated ”The owner of the protocol will be

a multisig, increasing the security of the protocol by a higher owner threshold necessary for

any hub tag updates.”
1https://github.com/NethermindEth/pwn-starknet/pull/58/commits/7b8d1d9c532e1716b0b5cc0428bc136f96d44bfe
2https://github.com/OpenZeppelin/cairo-contracts/blob/main/packages/governance/src/multisig/multisig.cairo

Page 6

https://github.com/NethermindEth/pwn-starknet/pull/58/commits/7b8d1d9c532e1716b0b5cc0428bc136f96d44bfe
https://github.com/OpenZeppelin/cairo-contracts/blob/main/packages/governance/src/multisig/multisig.cairo

PWN Finance Cairo

Security Review Report

3.3 | [MEDIUM] Usage of rebase tokens may alter the normal functioning of the protocol

■ Location(s): -

■ Description: Protocol allows to use rebase tokens that may have bad impact on the normal flow.

A rebase token is a type of cryptocurrency token whose total supply is dynamically adjusted based

on certain criteria such as the token’s price or market conditions. The goal of a rebase token is

to maintain its price stability relative to a target price. When the token’s price deviates from the

target, the protocol automatically adjusts the token’s supply through ”rebases” to bring the price

back in line with the target.

It’s possible to have:

□ Positive Rebase: If the token price goes above the desired reference price and the price

stability protocol aims to lower the token price, it may execute a positive rebase. In this case,

it may be necessary to ”mint” new supply to increase the total token supply and lower the

price. Specifically each user token balance will be increased proportionally.

□ Negative Rebase: If the token price goes below the desired reference price and the price

stability protocol aims to increase the token price, it may execute a negative rebase. In this

case, it may be necessary to ”burn” existing supply to reduce the total token supply and raise

the price. Specifically each user token balance will be reduced proportionally.

Due to positive and negative rebase the following scenarios are possible.

Scenario A:

1. Loan is created where Alice uses 100 $stETH rebase tokens as a collateral.

2. Due to positive rebase after some time the balance of $stETH in the vault grows to 106 tokens.

3. Alice repays the loan. She expects to get 106 $stETH back. But she gets only 100 tokens. 6

tokens are stuck in the vault forever.

Scenario B:

1. Loan is created where Alice uses 100 $stETH rebase tokens as a collateral.

2. Due to a negative rebase after some time the balance of $stETH in the vault decreases to 94

tokens.

3. Alice repays the loan. The collateral repayment fails as full amount of collateral can’t be

transferred to the borrower. Alice can’t claim the collateral either.

Scenario C:

1. Loan is created where Alice uses 100 $stETH rebase tokens as a collateral.

2. Second loan is created where Bob uses 100 $stETH rebase tokens as a collateral. The vault

has now 200 tokens.

3. Due to a negative rebase after some time the balance of $aSTETH in the vault decreases to

188 tokens.

4. Bob repays his loan. Bob gets back its full collateral of 100 $stETH .

5. Alice repays her loan. She should get 100 $stETH tokens. But there is only 88 $stETH tokens

in the vault. Alice’s collateral repayment fails. Alice can’t claim the collateral either. Tokens

belonging to Alice has been transferred to Bob

Page 7

PWN Finance Cairo

Security Review Report

■ Recommendation: Consider separating vault for each loan and return the full contract balance on

collateral repayment.

■ Status: Acknowledged.

■ Updates:

□ [PWN Finance, 22/05/2024]: The client acknowledged the issue and stated: ”We are aware

of this issue but decided to keep it unresolved. We don’t allow any identified rebalancing

tokens to be used on the platform. Rebalancing tokens are known for poor DeFi integration

and the need for wrappers/bundlers. Anyone who uses the protocol directly should be well

aware of this behavior. We can ”solve” the issue of negative rebalance by transferring the

missing balance to the vault directly in case of an honest mistake.”

3.4 | [LOW] Possibly empty reference contracts in simple loan

■ Location(s): pwn simple loan.cairo#747-771

■ Description: The addresses stored in pwn simple loan contract storage may be zero if initializer()

is not called as the first function after deployment: this may cause panics later in the code.

■ Recommendation: Consider verifying that the addresses are provided through calling initializer()

just after deployment.

■ Status: Acknowledged.

■ Updates:

□ [Extropy, 27/01/2025]: Client acknowledged the issue and stated that is part of the deployment

process.

3.5 | [LOW] LOAN token receiver may be not able to handle tokens

■ Location(s): pwn loan.cairo#159

■ Description: Within pwn loan.cairo the function mint() is supposed to mint new LOAN tokens to

the loan owner to represent its ownership.

fn mint(ref self: ContractState, owner: ContractAddress) -> felt252 {

let caller = get_caller_address();

only_active_loan(ref self, caller);

...

self.erc721.mint(owner, loan_id.into());

...

}

However erc721.mint() from Open Zeppelin is used which does not check if the recipient is able

to receive the ERC721 token, namely if it supports IERC721Receiver interface.

■ Recommendation: Consider using safe mint() instead available here3.

■ Status: Acknowledged.

3https://github.com/OpenZeppelin/cairo-contracts/blob/8e660c7b91641afee967a7ed86dd2061d471a861/src/token/erc721/

erc721.cairo#L583

Page 8

https://github.com/OpenZeppelin/cairo-contracts/blob/8e660c7b91641afee967a7ed86dd2061d471a861/src/token/erc721/erc721.cairo#L583
https://github.com/OpenZeppelin/cairo-contracts/blob/8e660c7b91641afee967a7ed86dd2061d471a861/src/token/erc721/erc721.cairo#L583

PWN Finance Cairo

Security Review Report

■ Updates:

□ [Extropy, 27/01/2025]: Acknowledged the issue to be consistent with the Solidity codebase

Also, the client stated ”The assumption is that if the lender could call the create loan or create

a proposal, the address could also receive ERC721 tokens”

3.6 | [LOW] Prevent protocol functionality by accepting loans immediately

■ Location(s): -

■ Description: When a loan is offered anyone can accept it. The loan can be repaid anytime within

the loan’s timeframe. The repayment amount depends on:

1. The original principal amount

2. How much time has passed from accepting the loan

3. What is the loan’s APR

4. What is the loan’s fixed interest amount

An attacker can:

1. Wait whenever someone posts a loan offer with no fixed interest amount

2. Accept the loan instantly

3. Repay the loan instantly

This way the attacker only pays back the principal amount and only loses gas fees. Repaying the

loan within a minute will make the usage of (high) APR irrelevant, since repayment amount is

calculated only once a minute.

The attacker can repeat this process for any offered loan (with no fixed interest amount), crippling

the protocol. The users offering loans either have to reissue the loan and repay the listing fee or to

abandon the protocol.

This attack only works for offered loans, not requested loans. Furthermore, loans can have setting

to lock the address of who can accept the loan, but in reality this is probably not used much.

The cost of executing this attack is relatively low due to cheap gas costs in Starknet, and the price

will only go down due to upgrades to the network.

■ Recommendation: Consider adding a minimum fixed interest amount to force attackers to pay

for the loans.

■ Status: Acknowledged.

■ Updates:

□ [Extropy, 27/01/2025]: Acknowledged the issue and stated to address this issue in the future.

3.7 | [LOW] Possibility to pollute a loan with dummy extension proposals

■ Location(s): pwn simple loan.cairo#400

■ Description: Suggesting an extension to a loan can be made by anyone: the proposer does not

have to be related to the loan itself in any way. It is therefore possible for an attacker to pollute the

contracts by making lots of extension proposals. This makes it much harder to find ”real” proposals

among the dummy ones.

Please note that a third user making extension proposals for a loan does not mean that they can

be later accepted.

Page 9

PWN Finance Cairo

Security Review Report

■ Recommendation: Consider forcing the extension proposer to be either the borrower or the

lender. This does not fully mitigate the issue, since a participant can also be malicious, but at least

limits the scope.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 1b2c414

3.8 | [LOW] Missing checks on ‘credit amount‘ and ‘available credit limit‘

■ Location(s): simple loan proposal.cairo#307-314

■ Description: Each Proposal type contains credit amount and available credit limit parame-

ters that can be set arbitrarily by the proposer and are used to keep track of how many credit is

left in a proposal when is accepted over time by multiple users. Particularly:

□ proposal.credit amount is defined as ”The amount of credit being offered or requested”

□ proposal.available credit limit is defined as ”The available credit limit for the proposal”

A problem arise: no checks are made on how credit amount and available credit limit values

relate to each other.

Indeed:

□ If a proposal is created with available credit limit lower than credit amount, it can-

not be accepted by anyone due to the error AVAILABLE CREDIT LIMIT EXCEEDED thrown in

simple loan proposal. accept proposal()

□ if a proposal is created with available credit limit greater than credit amount, since

credit amount is embedded in the proposal itself, acceptors cannot set it arbitrarily. This

means that if available credit limit = 100 ETH and credit amount = 40 ETH, then the

first user accepting the proposal consumes the first 40 ETH, the second the other 40 ETH and

then no one else can accept the remaining 20 ETH, since it is obliged to accept the proposal

with the credit amount set by the proposer.

■ Recommendation: Consider placing checks on credit amount and available credit limit val-

ues to ensure that available credit limit is always greater than or equal to credit amount.

Furthermore, if greater, it should be a multiple of credit amount

■ Status: Acknowledged.

■ Updates:

□ [Extropy, 27/01/2025]: Client acknowledged the issue saying this is responsibility of the

proposal creator.
4https://github.com/NethermindEth/pwn-starknet/pull/57/commits/1b2c413a7d1d4f4bad7329dcf192cce34290822b

Page 10

https://github.com/NethermindEth/pwn-starknet/pull/57/commits/1b2c413a7d1d4f4bad7329dcf192cce34290822b

PWN Finance Cairo

Security Review Report

3.9 | [LOW] ‘proposal data.len()‘ is only checked in fungible and dutch proposal types

■ Location(s): simple loan list proposal.cairo#209, simple loan simple proposal.cairo#174

■ Description: When accept proposal() is called within simple loan fungible proposal and

simple loan dutch auction proposal the length of the input proposal data is compared against

FUNGIBLE PROPOSAL DATA LEN and DUTCH PROPOSAL DATA LEN constants respectively.

For example in simple loan dutch auction proposal.cairo:

fn accept_proposal(

ref self: ContractState,

acceptor: starknet::ContractAddress,

refinancing_loan_id: felt252,

proposal_data: Array<felt252>,

) -> (felt252, Terms) {

if proposal_data.len() != DUTCH_PROPOSAL_DATA_LEN {

Err::INVALID_PROPOSAL_DATA_LEN(proposal_data.len());

}

...

}

However this check is missing the other proposal types simple loan list proposal and simple loan simple proposal

■ Recommendation: Consider adding the same check forsimple loan list proposal and simple loan simple proposal

in their respective accept proposal() functions.

■ Status: Partially resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed simple loan simple proposal.cairo in commit 782b975 while

simple loan list proposal.cairo was not fixed.

3.10 | [LOW] ‘MAX ACCRUING INTEREST APR‘ doesn’t match the Solidity constant

■ Location(s): pwn simple loan.cairo#90

■ Description: Within pwn simple loan.cairo the constant MAX ACCRUING INTEREST APR is defined

as it follows

pub const MAX_ACCRUING_INTEREST_APR: u32 = 160000;

However the same constant is defined differently in the solidity codebase6:

uint40 public constant MAX_ACCRUING_INTEREST_APR = 16e6; // 160,000 APR (with 2 decimals)

■ Recommendation: Consider changing MAX ACCRUING INTEREST APR definition in the cairo code-

base to match the solidity one.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 92a8f77

5https://github.com/NethermindEth/pwn-starknet/pull/59/commits/782b974bf3336b0ddc8df66ac560d82a4bd232e0
6https://github.com/PWNDAO/pwn contracts/blob/70e0e76e0d334cef1a5d3dec84d6f031defb6240/src/loan/terms/

simple/loan/PWNSimpleLoan.sol#L40
7https://github.com/NethermindEth/pwn-starknet/pull/57/commits/92a8f71ba492685368ccbbc66f61cb0a0558f65b

Page 11

https://github.com/NethermindEth/pwn-starknet/pull/59/commits/782b974bf3336b0ddc8df66ac560d82a4bd232e0
https://github.com/PWNDAO/pwn_contracts/blob/70e0e76e0d334cef1a5d3dec84d6f031defb6240/src/loan/terms/simple/loan/PWNSimpleLoan.sol#L40
https://github.com/PWNDAO/pwn_contracts/blob/70e0e76e0d334cef1a5d3dec84d6f031defb6240/src/loan/terms/simple/loan/PWNSimpleLoan.sol#L40
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/92a8f71ba492685368ccbbc66f61cb0a0558f65b

PWN Finance Cairo

Security Review Report

3.11 | [LOW] Possibility to pollute the protocol with dummy proposals

■ Location(s): simple loan dutch auction proposal.cairo#229, simple loan fungible proposal.cairo#204,

simple loan list proposal.cairo#182, simple loan simple proposal.cairo#154

■ Description: Making a proposal is for free and there is no restriction on how many proposals can

be created. Therefore it’s possible for an attacker to create lots of dummy proposals (for example

with a huge initial fee so that nobody accepts the proposals), polluting the protocol and making it

hard to find genuine proposals.

Please note that it’s challenging to determine which proposals are real proposals and which are

spam.

■ Recommendation: Consider adding a retainer for making a proposal. Returned when proposal is

accepted. Or adding a fixed fee for each proposal.

■ Status: Acknowledged.

■ Updates:

□ [Extropy, 27/01/2025]: Acknowledged issue and acceptedf this potential attack vector.

3.12 | [LOW] Usage of OZ version with known issues

■ Location(s): Scarb.toml#8

■ Description: The OpenZeppelin version in use (0.14.0) is an old version:

openzeppelin = { git = "https://github.com/OpenZeppelin/cairo-contracts.git",

tag = "v0.14.0" }

Note also that version 0.16.08 fixed a bug9 in the OwnableTwoStep implementation, which is being

used in pwn hub.cairo.

■ Recommendation: Consider upgrading OZ to version 0.19.0 (or newer).

■ Status: Acknowledged.

■ Updates:

□ [Extropy, 27/01/2025]: Acknowledged the issue and stated ”Since OZ v0.14.0 is the highest

supported version for Cairo 2.6.4, the only viable solution would be a full Cairo upgrade,

which is non-trivial and requires thorough testing and adaptation. Until then, sticking with

OZ v0.14.0 is the only practical approach while ensuring best practices in contract usage. ”

3.13 | [LOW] Span decomposition is missing checks in serialization

■ Location(s): serialization.cairo#54-73

■ Description: The function serde decompose() splits a Span into two Spans, according to lengths

defined inside the original Span.

The function is missing at least the following checks:

1. What if the original Span is empty (function panics)

8https://github.com/OpenZeppelin/cairo-contracts/releases/tag/v0.16.0
9https://github.com/OpenZeppelin/cairo-contracts/pull/1119

Page 12

https://github.com/OpenZeppelin/cairo-contracts/releases/tag/v0.16.0
https://github.com/OpenZeppelin/cairo-contracts/pull/1119

PWN Finance Cairo

Security Review Report

2. What if the ”left” length is too big or too small

// Example

input = [3, 1, 1, 2, 1, 1]

// left length is 3 but there are two elements.

// right length will be read as one of the left elements

3. What if the ”right” length is too big or too small

// Example

input = [2, 1, 1, 3, 1, 1]

// right length is 3 but there are two elements

4. What if the ”left” or ”right” lengths are not where they are supposed to be.)

// Example

input = [1, 2, 1, 1, 1, 3, 1]

// left length is 2 but is not placed at input[0]

// right length is 3 but is not placed at input[left_len +1] = input [3]

■ Recommendation: Consider adding the required checks to the function. Consider what should

happen if some of the checks fail.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 4bc7cf10

3.14 | [INFO] Optimize gas usage for loan minting

■ Location(s): pwn loan.cairo#154-155

■ Description: The mint() function reads the last loan id from storage twice. It can be optimized

to only read it once.

self.last_loan_id.write(self.last_loan_id.read() + 1);

let loan_id: felt252 = self.last_loan_id.read();

■ Recommendation: Consider reading the last loan id first to the loan id variable.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 026cab11

10https://github.com/NethermindEth/pwn-starknet/pull/60/commits/4bc7cfa23d24b3171923ef83dfc9bc9d54a8c7fa
11https://github.com/NethermindEth/pwn-starknet/pull/57/commits/026cabee26eb7762ff867c3351c0f5302cf67042

Page 13

https://github.com/NethermindEth/pwn-starknet/pull/60/commits/4bc7cfa23d24b3171923ef83dfc9bc9d54a8c7fa
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/026cabee26eb7762ff867c3351c0f5302cf67042

PWN Finance Cairo

Security Review Report

3.15 | [INFO] Duplicate code in loan token URI

■ Location(s): pwn loan.cairo#213-220, pwn loan.cairo#234+241

■ Description: The function token uri() is duplicated with another naming convention tokenUri().

Implementation is duplicated as well unnecessarily.

fn token_uri(self: @ContractState, loan_id: felt252) -> ByteArray {

self.erc721._require_owned(loan_id.into());

IPwnLoadMetadataProviderDispatcher {

contract_address: self.loan_contract.read(loan_id)

}

.loan_metadata_uri()

}

fn tokenUri(self: @ContractState, loan_id: felt252) -> ByteArray {

self.erc721._require_owned(loan_id.into());

IPwnLoadMetadataProviderDispatcher {

contract_address: self.loan_contract.read(loan_id)

}

.loan_metadata_uri()

}

■ Recommendation: Consider calling token uri function from tokenUri function to remove dupli-

cation.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 9ed1c112

3.16 | [INFO] Typos in code

■ Location(s): pwn simple loan.cairo#555, pwn simple loan.cairo#971, pwn simple loan.cairo#974

■ Description: There exist various small typos in the code of pwn simple loan.cairo:

□ At line 555 ”calladata” is written instead of ”calldata”

□ At line 971 ”accuring minutes” is written instead of ”accruing minutes”

□ At line 974 ”accured interest” is written instead of ”accrued interest”

■ Recommendation: Consider fixing the mentioned typos to improve code readability. Please also

note that the input named ”calladata” of get lender spec hash() seems to be an error made when

translating the codebase from Solidity to Cairo: instead of lender spec the input name used in

the Cairo codebase was the Solidity Data Location calldata.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 70324613

12https://github.com/NethermindEth/pwn-starknet/pull/57/commits/9ed1c1037f56a41333620051ac3da29b05f07aa7
13https://github.com/NethermindEth/pwn-starknet/pull/57/commits/70324640d12b6cb6c72d44f25086e33924e4160d

Page 14

https://github.com/NethermindEth/pwn-starknet/pull/57/commits/9ed1c1037f56a41333620051ac3da29b05f07aa7
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/70324640d12b6cb6c72d44f25086e33924e4160d

PWN Finance Cairo

Security Review Report

3.17 | [INFO] Enumerate loan status options

■ Location(s): types.cairo#59 , pwn simple loan.cairo#373-382

■ Description: Arbitrary numbers are used for Loan.status:

/// Represents a loan with its status and terms.

#[derive(Copy, Drop, Serde, Default, starknet::Store)]

pub struct Loan {

/// The status of the loan.

pub status: u8,

...

}

■ Recommendation: Consider adding an enum that explains the options for loan status and utilizing

that

■ Status: Acknowledged.

■ Updates:

□ [Extropy, 27/01/2025]: Acknowledged issue to be consistent with the Solidity codebase.

3.18 | [INFO] Functions that could be replaced by a multicall

■ Location(s): pwn hub.cairo#130 , revoked nonce.cairo#205

■ Description: Within the codebase it happens to have two functions for the same functionality:

the first sets some data based on one struct, given as parameter. The second function takes a

vector of structs as parameter, and sets the same data for all of them. For example set tag() and

set tags() in pwn hub.cairo

This pattern is common in Solidity side, but is possibly not needed in Cairo. In Starknet, one can

use account contract’s multicall functionality14 instead. The multicall is typically utilized by wallet

software (like Argent or Braavos), and is not very handy for contract-to-contract interactions. This

is why it may be desirable to still keep dual functions sometimes.

■ Recommendation: Consider whether some duplicate functionalities could be removed.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 4ec43b15

3.19 | [INFO] Documentation is inconsistent with the code

■ Location(s): serialization.cairo#3-4, serialization.cairo#40-41

■ Description: Within serialization.sol the function serde concat() is supposed to concatenate

two Span<felt252> into one single Array<felt252> inserting in it in order:

□ the length of the first Span<felt252> element

14https://github.com/OpenZeppelin/cairo-contracts/blob/release-v0.14.0/src/account/account.cairo#L92
15https://github.com/NethermindEth/pwn-starknet/pull/57/commits/4ec43b24d5ba6ffbf033017adf0a8bb8b4f4b60b

Page 15

https://github.com/OpenZeppelin/cairo-contracts/blob/release-v0.14.0/src/account/account.cairo#L92
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/4ec43b24d5ba6ffbf033017adf0a8bb8b4f4b60b

PWN Finance Cairo

Security Review Report

□ the elements of the first Span<felt252> element

□ the length of the second Span<felt252> element

□ the elements of the second Span<felt252> element

Example:

□ Span 1 -¿ [1,2]

□ Span 2 -¿ [3,4,5,6]

□ Concatenated array -¿ [2,1,2,4,3,4,5,6]

However the comment at lines 3-4 states that the output array has the two lengths as the first two

elements and then the span elements.

/// The output format includes the lengths of both slices at the beginning

/// followed by the elements of each slice.

The same thing applies to the comments at lines 40-41 related to the function serde decompose()

■ Recommendation: Consider changing the comments in order to be consistent with the code.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 05610a16

3.20 | [INFO] Unneeded access tag parameter

■ Location(s): revoked nonce.cairo#121

■ Description: The access tag is given as a parameter for the constructor. However, the parameter

doesn’t depend on any deployment time information and could be a constant variable inside the

contract.

#[constructor]

fn constructor(ref self: ContractState, hub: ContractAddress, access_tag: felt252) {

self.hub.write(IPwnHubDispatcher { contract_address: hub });

self.access_tag.write(access_tag);

}

■ Recommendation: Consider removing the access tag parameter from the constructor and instead

specifying the variable as a constant inside the file.

■ Status: Acknowledged.

■ Updates:

□ [Extropy, 27/01/2025]: Acknowledged issue to be consistent with the Solidity codebase Also,

the contract can be redeployed with different tags without any code changes.
16https://github.com/NethermindEth/pwn-starknet/pull/57/commits/05610a234d748e3989d827d52480198225179009

Page 16

https://github.com/NethermindEth/pwn-starknet/pull/57/commits/05610a234d748e3989d827d52480198225179009

PWN Finance Cairo

Security Review Report

3.21 | [INFO] Missing unsupported category checks

■ Location(s): library.cairo#196-211, library.cairo#299-315, library.cairo#317-329

■ Description: Within library.cairo the functions approve asset(), check category via src5()

and check format () do not throw the UNSUPPORTED CATEGORY error if the Asset in input does

not belong to the allowed categories as done in other functions, for example in balance of() as

shown below.

if *self.category != Category::ERC20

&& *self.category != Category::ERC721

&& *self.category != Category::ERC1155 {

Err::UNSUPPORTED_CATEGORY(*self.category);

}

approve asset(), check category via src5() and check format () use the match keyword

which is designed to be exhaustive: if the Asset category in input is not one between ERC20,

ERC721 or ERC1155 it will panic.

■ Recommendation: Consider adding the aforementioned check to approve asset(), check category via src5()

and check format () to reflect the behavior of the solidity codebase (available here17) which

throws an error for unsupported categories in the respective functions instead of panicking.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit f826ef18

3.22 | [INFO] Functions that do not change the contract state are not marked as view

■ Location(s): pwn simple loan.cairo#944, pwn simple loan.cairo#1020

■ Description: Within pwn simple loan.cairo the functions check loan can be repaid() and

check valid asset() use a reference to the ContractState even if no state modifications happen

within those functions

■ Recommendation: Consider changing the first function argument to self: @ContractState

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 89eca919

3.23 | [INFO] ‘IERC721 METADATA ID‘ interface not registered

■ Location(s): pwn loan.cairo#126-133

■ Description: Within pwn loan.cairo constructor the name and symbol of ERC721 component

are set directly without using the provided initializer() function from here20. This design

choice was probably made because there is no need to pass anything for the third parameter of

the initializer() function which is the base uri.
17https://github.com/PWNDAO/MultiToken/blob/863dcd8b4c60494d1deda231fb95b48073d85659/src/MultiToken.sol
18https://github.com/NethermindEth/pwn-starknet/pull/57/commits/f826ef23dc39657d47183c29d87c6b6aa00873eb
19https://github.com/NethermindEth/pwn-starknet/pull/57/commits/89eca9286f4156e7f8ade4b1187d826193b456e9

20https://github.com/OpenZeppelin/cairo-contracts/blob/8e660c7b91641afee967a7ed86dd2061d471a861/src/token/erc721/

erc721.cairo#L478

Page 17

https://github.com/PWNDAO/MultiToken/blob/863dcd8b4c60494d1deda231fb95b48073d85659/src/MultiToken.sol
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/f826ef23dc39657d47183c29d87c6b6aa00873eb
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/89eca9286f4156e7f8ade4b1187d826193b456e9
https://github.com/OpenZeppelin/cairo-contracts/blob/8e660c7b91641afee967a7ed86dd2061d471a861/src/token/erc721/erc721.cairo#L478
https://github.com/OpenZeppelin/cairo-contracts/blob/8e660c7b91641afee967a7ed86dd2061d471a861/src/token/erc721/erc721.cairo#L478

PWN Finance Cairo

Security Review Report

fn constructor(ref self: ContractState, hub: ContractAddress) {

self.hub.write(IPwnHubDispatcher { contract_address: hub });

self.erc721.ERC721_name.write("PWN LOAN");

self.erc721.ERC721_symbol.write("LOAN");

self.src5.register_interface(IERC721_ID);

self.src5.register_interface(IERC5646_ID);

}

However the initializer() function, in addition to set the name, the symbol and the token

base URI, also registers the interfaces IERC721 ID and IERC721 METADATA ID. Within the current

codebase only IERC721 ID and IERC5646 ID are registered within pwn loan constructor.

Registering the IERC721 METADATA ID means adding support to the additional view functions

name(), symbol() and token uri() as stated on the docs21. Even if those functions are imple-

mented manually at the end of pwn loan.cairo file and so they provide the same functionality

from a user’s perspective, without registering the interface ID external contracts or dApps might

not be able to automatically recognize that the contract supports the metadata extension.

■ Recommendation: Consider using the initializer() function of the ERC721 component leaving

empty the base uri field if not needed. Also consider removing the reimplemented view functions

as they are provided when the initializer registers the IERC721 METADATA ID interface.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 9767b822

3.24 | [INFO] Use default address

■ Location(s): lib.cairo#71

■ Description: There is an implementation for Default::default() contract address but it’s not

utilized consistently.

impl ContractAddressDefault of Default<starknet::ContractAddress> {

#[inline(always)]

fn default() -> starknet::ContractAddress nopanic {

starknet::contract_address_const::<0>()

}

}

■ Recommendation: Consider replacing all occurences of starknet::contract address const::<0>()

or contract address const::<0>() with Default::default()

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit a108b423

21https://docs.openzeppelin.com/contracts-cairo/0.14.0/api/erc721#IERC721Metadata
22https://github.com/NethermindEth/pwn-starknet/pull/57/commits/9767b844a458eddc37c3bda45c9298dcf5b17ef8
23https://github.com/NethermindEth/pwn-starknet/pull/57/commits/a108b4e50a76a31a9041d945e88d725c1856efc5

Page 18

https://docs.openzeppelin.com/contracts-cairo/0.14.0/api/erc721#IERC721Metadata
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/9767b844a458eddc37c3bda45c9298dcf5b17ef8
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/a108b4e50a76a31a9041d945e88d725c1856efc5

PWN Finance Cairo

Security Review Report

3.25 | [INFO] Duplicate Event Emission in PWNHub ‘set tags‘ Function

■ Location(s): pwn hub.cairo#149

■ Description: Within pwn hub.cairo the function set tags() the current implementation redun-

dantly emits the TagSet event twice for each tag assignment:

1. Within the set tag function, which is called for each address-tag pair.

2. Explicitly within the set tags function, after the call to set tag.

This results in duplicate event emissions, which lead to the following issues:

□ Gas Inefficiency: Redundant event emissions increase the gas cost for each execution, partic-

ularly when processing a large number of addresses and tags.

□ Log Bloating: The event logs are unnecessarily bloated, which can make event indexing and

monitoring more complex.

□ Potential Confusion: Monitoring systems relying on events may misinterpret duplicate events

as separate operations, causing ambiguity in data analysis.

■ Recommendation: Since the set tag functions already emits the TagSet event, consider removing

the redundant event emission in order to prevent duplicate events from being logged.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 4ec43b24 by removing set tags()

3.26 | [INFO] Accruing interest calculation uses a magic number

■ Location(s): pwn simple loan.cairo#93

■ Description: The value of ACCRUING INTEREST APR DENOMINATOR looks like a magic number.

pub const ACCRUING_INTEREST_APR_DENOMINATOR: u64 = 5256000000;

In the Solidity version25 instead its origin it’s clear:

uint256 public constant ACCRUING_INTEREST_APR_DENOMINATOR =

ACCRUING_INTEREST_APR_DECIMALS * MINUTES_IN_YEAR * 100;

■ Recommendation: Consider formulating the number explicitly, to make its origin clearer:

pub const ACCRUING_INTEREST_APR_DENOMINATOR: u64 = 100 * MINUTES_IN_YEAR * 100;

Unfortunately, the value ACCRUING INTEREST APR DECIMALS can’t be used directly, but it could be

indicated in a comment.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 877c1d26

24https://github.com/NethermindEth/pwn-starknet/pull/57/commits/4ec43b24d5ba6ffbf033017adf0a8bb8b4f4b60b
25https://github.com/PWNDAO/pwn contracts/blob/70e0e76e0d334cef1a5d3dec84d6f031defb6240/src/loan/terms/

simple/loan/PWNSimpleLoan.sol#L44
26https://github.com/NethermindEth/pwn-starknet/pull/57/commits/877c1d6f23fce8572c70cafea9a997796b4b9499

Page 19

https://github.com/NethermindEth/pwn-starknet/pull/57/commits/4ec43b24d5ba6ffbf033017adf0a8bb8b4f4b60b
https://github.com/PWNDAO/pwn_contracts/blob/70e0e76e0d334cef1a5d3dec84d6f031defb6240/src/loan/terms/simple/loan/PWNSimpleLoan.sol#L44
https://github.com/PWNDAO/pwn_contracts/blob/70e0e76e0d334cef1a5d3dec84d6f031defb6240/src/loan/terms/simple/loan/PWNSimpleLoan.sol#L44
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/877c1d6f23fce8572c70cafea9a997796b4b9499

PWN Finance Cairo

Security Review Report

3.27 | [INFO] Unneeded use of initializers

■ Location(s): pwn config.cairo#160, pwn simple loan.cairo#747

■ Description: Both of the listed contracts utilize an initializer function while a constructor should

be used instead.

■ Recommendation: In the pwn config contract, consider changing the initialize() function to

be a constructor and remove dependencies of OZ’s Initializable component. For pwn simple loan

contract, consider removing the initializer() function after moving its contents to the con-

structor.

■ Status: Partially Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Partially fixed issue in commit c5693627. Location pwn config.cairo#160

should still be fixed.

□ [PWN, 27/01/2025]: ”config will be deployed as a proxy”

3.28 | [INFO] Math multiplication may panic

■ Location(s): math.cairo#25

■ Description: The cast from u512 into u256 may panic. Indeed try into().unwrap() may panic if

c has several lower orders of magnitude than a*b. This can be caused by calculation that use the

mul div() function.

pub fn mul_div(a: u256, b: u256, c: u256) -> u256 {

if c == 0 {

panic!("mul_div division by zero");

}

let (q, _) = u512_safe_div_rem_by_u256(u256_wide_mul(a, b), c.try_into().unwrap());

q.try_into().unwrap()

}

■ Recommendation: Consider panicking gracefully if the number is not in the range of a u256.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 83515a28

3.29 | [INFO] ‘abi encoded packed()‘ never used in the codebase

■ Location(s): merkle proof.cairo#5

■ Description: The function abi encoded packed() is never used in the codebase:

27https://github.com/NethermindEth/pwn-starknet/pull/57/commits/c569367b68c240a03a8778ec4464a891fc8e9671
28https://github.com/NethermindEth/pwn-starknet/pull/61/commits/83515a50a2a0063e4056f2edc0fc3038b81373eb

Page 20

https://github.com/NethermindEth/pwn-starknet/pull/57/commits/c569367b68c240a03a8778ec4464a891fc8e9671
https://github.com/NethermindEth/pwn-starknet/pull/61/commits/83515a50a2a0063e4056f2edc0fc3038b81373eb

PWN Finance Cairo

Security Review Report

pub fn abi_encoded_packed(data: Array<u256>) -> Array<u8> {

let mut result: Array<u8> = array![];

let mut i = 0;

let len = data.len();

while i < len {

result = result.concat(@u256_to_be_bytes(*data.at(i)));

i += 1;

};

result

}

■ Recommendation: Consider removing dead code.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 0654ee29

3.30 | [INFO] Add comments on how hashes are formed

■ Location(s): pwn hub tags.cairo#1-3, erc5646.cairo#1, library.cairo#52-57

■ Description: The used hashes seem arbitrary, which leaves an open question about how they are

formed.

pub const ACTIVE_LOAN: felt252 =

0x0256ea094d7a53440eef11fa42b63159fbf703b4ee579494a6ae85afc5603594;

pub const LOAN_PROPOSAL: felt252 =

0xba7a416221f318a8087fd62f9ff407488b7f5501e79caf9b0666c2df326b9c;

pub const NONCE_MANAGER: felt252 =

0x1b33e4d1c538d376dd219215a123562fbb87b8c85fa2aa4ebbd8810c2454d9;

pub const IERC5646_ID: felt252 =

0x012ee61ceedb7b8ff3da67d4e5d24d13d2a1ef35fdcd3a10b9138823f62342ba;

const ERC20_INTERFACE_ID: felt252 =

0x3d21dcd478803698af065a01681e1f1801a5b80c367ecb5561fbf10b416756e;

const ERC721_INTERFACE_ID: felt252 =

0x2c8b9553a387f54d6021766166528967ac9bb9393acf1c47678b9eea63dda07;

const ERC1155_INTERFACE_ID: felt252 =

0xcd38fd6bb8f64dd3988ff3ae65d0cd040c95aaad81b509a1f4f0b3e40adf88;

■ Recommendation: Consider adding comments on how the hashes are formed so it’s clear that

they are sensible.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit d78f0f30

29https://github.com/NethermindEth/pwn-starknet/pull/57/commits/0654ee0ed55f44a9a278fc67e31649ba882627b9
30https://github.com/NethermindEth/pwn-starknet/pull/62/commits/d78f0f202eccbe44ed3d34793822c71f66f5c3d6

Page 21

https://github.com/NethermindEth/pwn-starknet/pull/57/commits/0654ee0ed55f44a9a278fc67e31649ba882627b9
https://github.com/NethermindEth/pwn-starknet/pull/62/commits/d78f0f202eccbe44ed3d34793822c71f66f5c3d6

PWN Finance Cairo

Security Review Report

3.31 | [INFO] Lock used library versions

■ Location(s): Scarb.toml#9-19

■ Description: The used Alexandria libraries utilize the latest versions. This may cause problems

if the versions change during development, without developers noticing, and there is a new

introduced bug in Alexandria.

■ Recommendation: Consider locking the used versions.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 38f3a331

3.32 | [INFO] Inconsistent documentation related to ERC721 token ownership

■ Location(s): pwn loan.cairo#213, pwn loan.cairo#234

■ Description: The documentation claims that if the token is not owned by the caller, a TO-

KEN NOT OWNED error is given. This is incorrect because:

1. Error is thrown only if the token is not owned by anyone. The caller doesn’t matter

2. The thrown error is actually ”ERC721: invalid token ID”.

Related OZ code available here32.

■ Recommendation: Consider changing the documentation to state the right error message and not

claim that it’s related to the caller.

■ Status: Resolved.

■ Updates:

□ [Extropy, 27/01/2025]: Fixed issue in commit 80344433

31https://github.com/NethermindEth/pwn-starknet/pull/63/commits/38f3a390e1ba369016598c615a6441254862630b
32https://github.com/OpenZeppelin/cairo-contracts/blob/release-v0.14.0/src/token/erc721/erc721.cairo#L78
33https://github.com/NethermindEth/pwn-starknet/pull/57/commits/803444708f74c01c3c3857921fa6ed5520626949

Page 22

https://github.com/NethermindEth/pwn-starknet/pull/63/commits/38f3a390e1ba369016598c615a6441254862630b
https://github.com/OpenZeppelin/cairo-contracts/blob/release-v0.14.0/src/token/erc721/erc721.cairo#L78
https://github.com/NethermindEth/pwn-starknet/pull/57/commits/803444708f74c01c3c3857921fa6ed5520626949

PWN Finance Cairo

Security Review Report

4 | Test Coverage

4.1 | Solidity tests

The Cairo (Starknet) project has a comprehensive suite of unit tests, with a focus on a loan and multi-

token system. The project’s test suite is in excellent health, with no failing tests. The high number

of passing tests indicates thorough testing practices and provides a high level of confidence in the

correctness and security of the code.

Also, the detailed gas usage information is helpful for identifying potential areas for optimization, while

the ignored tests should be addressed to further enhance the test coverage.

However it can be noted that some of the unit test files have thousands of lines, which makes them very

difficult to analyze and read. Structuring the tests better, for example to sub-folders, utilizing common

setup functionalities if needed, can be considered.

4.1.1 | Key Areas Tested

MultiToken Functionality:

■ Tests cover ERC20, ERC721, and ERC1155 token standards.

■ Checks for correct category and format validation.

■ ‘MultiToken‘ library tests ensure proper handling of different token types and interactions with

external contracts.

■ Tests using ‘check category via src5‘ ensure proper detection of NFT contracts.

Loan System:

■ Loan Creation: Extensive tests for creating loans, including various parameters, edge cases, and

error conditions. Fuzz tests are used to test a wide range of inputs.

■ Loan Repayment: Tests cover loan repayment, including scenarios with different loan owners,

default conditions, and edge cases.

■ Loan Claiming: Tests for claiming both repaid and defaulted loans, including transferring of assets

and edge cases.

■ Loan Extension: Tests for extending loans, including proposal creation, different caller scenarios,

and error conditions.

■ Loan Metadata: Tests for setting, updating, and retrieving loan metadata.

■ Loan Status: Verification of different loan states (e.g., running, defaulted, repaid).

■ State Fingerprint: Correct calculation and updating of the state fingerprint.

■ Refinancing: The tests include some checks regarding refinancing.

Proposal Types:

■ Tests for different proposal types, including Simple, Fungible, Dutch Auction, and List proposals.

■ These tests cover proposal creation, data encoding/decoding, credit usage, nonce revocation, and

various validation checks.

Fee Calculation:

Page 23

PWN Finance Cairo

Security Review Report

■ Tests for fee calculation, including edge cases like zero amounts, small amounts, and non-zero

fees.

■ Tests for setting and updating the fee collector address.

Nonce Revocation:

■ Extensive fuzz tests for nonce revocation, including different nonce spaces and owner scenarios.

■ Tests for checking nonce usability and revocation status.

Merkle Proof:

■ Tests for hashing and verifying Merkle proofs.

Serialization:

■ Tests for serialization and deserialization of data structures.

Configuration:

■ Tests for setting and updating configuration parameters, including fee, fee collector, and loan

metadata URI.

Hub Contract:

■ Tests for setting and removing tags from addresses in the hub contract.

Vault:

■ Basic tests for vault operations like ‘push‘, ‘pull‘, ‘supply to pool‘, and ‘withdraw from pool‘.

Integration Tests:

■ Limited integration tests for creating loans using various proposal types and claiming repaid and

defaulted loans.

■ Integrity tests for scenarios where the loan contract is not active.

4.1.2 | Gas Usage

The test results include gas usage information, which is valuable for optimizing contract efficiency.

Some tests, particularly those involving loops or complex logic, have higher gas consumption.

4.1.3 | Fuzzer Seed

The fuzzer seed is provided, which allows for reproducing the exact set of fuzz tests that were run.

snforge test

Collected 358 test(s) from pwn package

[PASS] pwn::multitoken::library::MultiToken::test::test_check_category_via_src5_shou

ld_return_false_when_erc20_when_src5_supports_erc721 (gas: ~1)

[PASS] pwn::multitoken::library::MultiToken::test::test_check_category_via_src5_shou

ld_return_true_when_erc721 (gas: ~3)

[PASS] pwn::multitoken::library::MultiToken::test::test_check_category_via_src5_shou

ld_return_false_when_erc20_when_src5_supports_erc1155 (gas: ~1)

[PASS] pwn::multitoken::library::MultiToken::test::test_check_category_via_src5_shou

ld_return_false_when_erc20 (gas: ~1)

[PASS] pwn::multitoken::library::MultiToken::test::test_check_category_via_src5_shou

Page 24

PWN Finance Cairo

Security Review Report

ld_return_true_when_erc1155 (gas: ~3)

[PASS] pwn::loan::lib::serialization::tests::test_serde_struct (gas: ~3)

[PASS] pwn::loan::lib::merkle_proof::tests::test_hash (gas: ~1204)

[PASS] pwn::loan::lib::merkle_proof::tests::test_hash2 (gas: ~1197)

[PASS] pwn::loan::lib::serialization::tests::test_serde_concat (gas: ~2)

[PASS] pwn::loan::lib::serialization::tests::test_serde_decompose (gas: ~3)

[PASS] pwn::loan::lib::merkle_proof::tests::test_hash2_2 (gas: ~1215)

[PASS] pwn::loan::lib::merkle_proof::tests::test_verify_proof_mock_proof (gas: ~3629

)

[PASS] pwn::loan::lib::merkle_proof::tests::test_verify_proof (gas: ~4860)

[PASS] pwn::multitoken::library::MultiToken::test::test_check_category_should_return

_true_when_category_registered (runs: 256, gas: {max: ~3, min: ~3, mean: ~3.00,

std deviation: ~0.00})

[PASS] pwn::multitoken::library::MultiToken::test::test_check_category_should_return

_false_when_different_category_registered (runs: 256, gas: {max: ~3, min: ~3, m

ean: ~3.00, std deviation: ~0.00})

[PASS] pwn::multitoken::library::MultiToken::test::test_check_category_should_return

_true_when_category_not_registered_when_check_via_src5_returns_true (runs: 256,

gas: {max: ~7, min: ~4, mean: ~6.00, std deviation: ~1.40})

[PASS] pwn::multitoken::library::MultiToken::test::test_check_format_should_return_t

rue_when_erc721_with_zero_amount (runs: 256, gas: {max: ~1, min: ~1, mean: ~1.0

0, std deviation: ~0.00})

[PASS] pwn::multitoken::library::MultiToken::test::test_check_format_should_return_f

alse_when_erc20_with_non_zero_id (runs: 256, gas: {max: ~1, min: ~1, mean: ~1.0

0, std deviation: ~0.00})

[PASS] pwn::multitoken::library::MultiToken::test::test_check_format_should_return_t

rue_when_erc20_with_zero_id (runs: 256, gas: {max: ~1, min: ~1, mean: ~1.00, st

d deviation: ~0.00})

[PASS] pwn::multitoken::library::MultiToken::test::test_check_format_should_return_f

alse_when_erc721_with_non_zero_amount (runs: 256, gas: {max: ~1, min: ~1, mean:

~1.00, std deviation: ~0.00})

[PASS] pwn::multitoken::library::MultiToken::test::test_check_format_should_return_t

rue_when_erc1155 (runs: 256, gas: {max: ~1, min: ~1, mean: ~1.00, std deviation

: ~0.00})

[IGNORE] tests::integration::simple_loan_integration_test::test_should_repay_loan_wh

en_not_expired_when_original_lender_is_loan_owner

[IGNORE] tests::integration::protocol_integrity_test::test_should_repay_loan_when_lo

an_contract_not_active_when_original_lender_is_loan_owner

[IGNORE] tests::unit::simple_loan_test::create_loan::test_fuzz_should_call_proposal_

contract

[IGNORE] tests::fork::deployed_protocol_test::test_deployed_protocol

[IGNORE] tests::fork::use_cases_test::test_use_case_should_fail_when_20_collateral_p

assed_with_721_category

[IGNORE] tests::fork::use_cases_test::test_use_case_should_fail_when_20_collateral_p

assed_with_1155_category

[IGNORE] tests::fork::use_cases_test::test_use_case_should_fail_when_using_erc721_as

_credit

[IGNORE] tests::fork::use_cases_test::test_should_pass_when_invalid_src5_support

[IGNORE] tests::fork::use_cases_test::test_use_case_should_refinance_running_loan

[PASS] tests::unit::config_test::set_fee_collector::test_should_set_fee_collector_ad

dress (gas: ~368)

[PASS] tests::unit::config_test::set_loan_metadata_uri::test_should_fail_when_zero_l

oan_contract (gas: ~367)

[PASS] tests::unit::LOAN_test::test_should_have_correct_name_and_symbol (gas: ~557)

[PASS] tests::unit::LOAN_test::test_should_fail_when_caller_is_not_stored_loan_contr

act_for_given_loan_id (gas: ~823)

[PASS] tests::unit::config_test::set_fee::test_should_emit_event_fee_updated (gas: ~

369)

Page 25

PWN Finance Cairo

Security Review Report

[PASS] tests::unit::config_test::set_loan_metadata_uri::test_should_fail_when_caller

_is_not_owner (gas: ~366)

[PASS] tests::unit::config_test::initialize::test_should_fail_when_fee_collector_is_

zero_address (gas: ~168)

[PASS] tests::unit::LOAN_test::test_should_delete_stored_loan_contract (gas: ~635)

[PASS] tests::unit::LOAN_test::test_should_store_loan_contract_under_loan_id (gas: ~

818)

[PASS] tests::unit::config_test::set_fee_collector::test_should_fail_when_caller_is_

not_owner (gas: ~366)

[PASS] tests::unit::LOAN_test::test_should_burn_loan_token (gas: ~636)

[PASS] tests::unit::config_test::set_default_loan_metadata_uri::test_should_emit_eve

nt_default_loan_metadata_uri_updated (gas: ~498)

[PASS] tests::unit::config_test::loan_metadata_uri::test_should_return_default_loan_

metadata_uri_when_no_store_value_for_loan_contract (gas: ~500)

[PASS] tests::unit::fee_calculator_test::test_should_return_correct_value_for_zero_f

ee (gas: ~1)

[PASS] tests::unit::config_test::loan_metadata_uri::test_should_return_loan_metadata

_uri_when_stored_value_for_loan_contract (gas: ~633)

[PASS] tests::unit::fee_calculator_test::test_should_return_correct_value_for_non_ze

ro_fee (gas: ~1)

[PASS] tests::unit::fee_calculator_test::test_should_handle_small_amount (gas: ~1)

[PASS] tests::unit::fee_calculator_test::test_should_handle_zero_amount (gas: ~1)

[PASS] tests::unit::hub_test::constructor::test_should_set_hub_owner (gas: ~167)

[PASS] tests::unit::hub_test::set_tag::test_should_fail_when_caller_is_not_owner (ga

s: ~169)

[PASS] tests::unit::fee_calculator_test::test_fuzz_fee_and_new_loan_amount_are_eq_to

_original_loan_amount (gas: ~1)

[PASS] tests::unit::hub_test::set_tag::test_should_remove_tag_from_address (gas: ~17

5)

[PASS] tests::unit::hub_test::set_tag::test_should_add_tag_to_address (gas: ~235)

[PASS] tests::unit::hub_test::set_tag::test_should_emit_event_tag_set (gas: ~235)

[PASS] tests::unit::hub_test::set_tags::test_should_not_fail_when_empty_list (gas: ~

170)

[PASS] tests::unit::hub_test::set_tags::test_should_fail_when_caller_is_not_owner (g

as: ~170)

[PASS] tests::unit::hub_test::set_tags::test_should_fail_when_diff_input_lengths (ga

s: ~170)

[PASS] tests::unit::hub_test::set_tags::test_should_emit_event_tag_set_for_every_set

(gas: ~308)

[PASS] tests::unit::hub_test::set_tags::test_should_add_tags_to_address (gas: ~307)

[PASS] tests::unit::hub_test::set_tags::test_should_remove_tags_from_address (gas: ~

187)

[PASS] tests::unit::hub_test::has_tag::test_should_return_false_when_address_does_no

t_have_tag (gas: ~235)

[PASS] tests::unit::hub_test::has_tag::test_should_return_true_when_address_does_hav

e_tag (gas: ~167)

[PASS] tests::unit::multitoken_category_registry_test::register_category_value::test

_should_fail_when_caller_is_not_owner (gas: ~169)

[PASS] tests::unit::multitoken_category_registry_test::constructor::test_should_set_

contract_owner (gas: ~167)

[PASS] tests::unit::multitoken_category_registry_test::register_category_value::test

_should_fail_when_category_max_u8_value (gas: ~168)

[PASS] tests::unit::config_test::initialize::test_should_set_values (gas: ~363)

[PASS] tests::unit::LOAN_test::test_should_call_loan_contract_and_return_correct_val

ue (gas: ~820)

[PASS] tests::unit::LOAN_test::test_should_emit_event_loan_burned (gas: ~638)

[PASS] tests::unit::multitoken_library_test::test_should_fail_when_erc20_when_source

_is_not_this_when_call_to_non_contract_address (gas: ~3)

Page 26

PWN Finance Cairo

Security Review Report

[PASS] tests::unit::multitoken_library_test::test_should_call_safe_transfer_from_whe

n_erc721 (gas: ~1677)

[PASS] tests::unit::config_test::set_fee_collector::test_should_emit_event_fee_colle

ctor_updated (gas: ~369)

[PASS] tests::unit::multitoken_library_test::test_should_call_transfer_from_when_erc

721 (gas: ~1216)

[PASS] tests::unit::multitoken_library_test::test_should_call_safe_transfer_from_whe

n_erc1155 (gas: ~1746)

[PASS] tests::unit::multitoken_library_test::test_should_return_balance_of_erc20 (ga

s: ~1209)

[PASS] tests::unit::multitoken_library_test::test_should_set_amount_to_one_when_erc1

155_with_zero_amount (gas: ~1746)

[PASS] tests::unit::multitoken_library_test::test_should_return_balance_of_erc721 (g

as: ~1204)

[PASS] tests::unit::multitoken_library_test::test_should_return_balance_of_erc1155 (

gas: ~1596)

[PASS] tests::unit::multitoken_library_test::test_erc20_transfer_asset_from_should_s

ucceed_when_approved (gas: ~1232)

[PASS] tests::unit::multitoken_library_test::test_erc20_transfer_asset_from_should_f

ail_when_not_approved (gas: ~1210)

[PASS] tests::unit::multitoken_library_test::test_erc721_transfer_asset_from_should_

fail_when_not_approved (gas: ~1206)

[PASS] tests::unit::multitoken_library_test::test_erc1155_transfer_asset_from_should

_fail_when_not_approved (gas: ~1597)

[PASS] tests::unit::multitoken_library_test::test_erc721_transfer_asset_from_should_

succeed_when_approved (gas: ~1679)

[PASS] tests::unit::multitoken_library_test::test_is_valid_with_registry_should_retu

rn_true_when_category_and_format_check_return_true (gas: ~8)

[PASS] tests::unit::multitoken_library_test::test_should_fail_when_different_categor

y (gas: ~1)

[PASS] tests::unit::multitoken_library_test::test_is_valid_without_registry_should_r

eturn_true_when_category_and_format_check_return_true (gas: ~8)

[PASS] tests::unit::multitoken_library_test::test_erc1155_transfer_asset_from_should

_succeed_when_approved (gas: ~1752)

[PASS] tests::unit::multitoken_library_test::test_should_fail_when_different_address

(gas: ~1)

[PASS] tests::unit::multitoken_library_test::test_should_fail_when_different_id (gas

: ~1)

[PASS] tests::unit::multitoken_library_test::test_should_pass_when_different_amount

(gas: ~1)

[PASS] tests::unit::LOAN_test::test_should_fail_when_caller_is_not_active_loan_contr

act (gas: ~611)

[PASS] tests::unit::config_test::initialize::test_should_fail_when_called_second_tim

e (gas: ~367)

[PASS] tests::unit::config_test::initialize::test_should_fail_when_owner_is_zero_add

ress (gas: ~102)

[PASS] tests::unit::config_test::set_fee::test_should_fail_when_new_value_bigger_tha

n_max_fee (gas: ~369)

[PASS] tests::unit::config_test::set_fee::test_should_set_fee_value (gas: ~368)

[PASS] tests::unit::config_test::set_default_loan_metadata_uri::test_should_store_de

fault_loan_metadata_uri (gas: ~497)

[PASS] tests::unit::config_test::set_loan_metadata_uri::test_should_store_loan_metad

ata_uri_to_loan_contract (gas: ~500)

[PASS] tests::unit::LOAN_test::test_should_mint_loan_token (gas: ~820)

[PASS] tests::unit::config_test::set_fee::test_should_fail_when_caller_is_not_owner

(gas: ~366)

[PASS] tests::unit::config_test::set_fee_collector::test_should_fail_when_setting_ze

ro_address (gas: ~367)

Page 27

PWN Finance Cairo

Security Review Report

[PASS] tests::unit::multitoken_category_registry_test::register_category_value::test

_fuzz_should_emit_CategoryRegistered (runs: 256, gas: {max: ~235, min: ~1, mean

: ~233.00, std deviation: ~20.60})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_owner::test_fuzz_should_fa

il_when_caller_does_not_have_access_tag (runs: 256, gas: {max: ~549, min: ~518,

mean: ~548.00, std deviation: ~2.07})

[PASS] tests::unit::config_test::set_loan_metadata_uri::test_should_emit_event_loan_

metadata_uri_updated (gas: ~498)

[PASS] tests::unit::multitoken_category_registry_test::unregister_category_value::te

st_should_fail_when_caller_is_not_owner (gas: ~169)

[PASS] tests::unit::revoked_nonce_test::revoke_nonce::test_fuzz_should_fail_when_non

ce_already_revoked (runs: 256, gas: {max: ~652, min: ~528, mean: ~650.00, std d

eviation: ~8.59})

[PASS] tests::unit::revoked_nonce_test::revoke_nonces::test_fuzz_should_fail_when_an

y_nonce_already_revoked (runs: 256, gas: {max: ~652, min: ~529, mean: ~651.00,

std deviation: ~8.52})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce::test_fuzz_should_emit_nonce_re

voked (runs: 256, gas: {max: ~529, min: ~465, mean: ~528.00, std deviation: ~4.

06})

[PASS] tests::unit::LOAN_test::test_should_increase_last_loan_id (gas: ~819)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_return_used

_credit (gas: ~1186)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_revoke_nonc

e (gas: ~1196)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_o

ffer_nonce_not_usable (gas: ~1242)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_return_prop

osal_hash (gas: ~1126)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_c

aller_is_not_proposer (gas: ~1137)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_c

aller_is_not_allowed_acceptor (gas: ~1245)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_emit_propos

al_made (gas: ~1203)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_revoke_offe

r_when_available_credit_limit_equal_to_zero (gas: ~1305)

[PASS] tests::unit::revoked_nonce_test::revoke_nonce::test_fuzz_should_store_nonce_a

s_revoked (runs: 256, gas: {max: ~530, min: ~466, mean: ~529.00, std deviation:

~4.06})

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_u

sed_credit_exceeds_available_credit_limit (gas: ~1230)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_increase_us

ed_credit_when_used_credit_not_exceeds_available_credit_limit (gas: ~1297)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_c

omputer_registry_returns_computer_when_computer_returns_different_state_fingerp

rint (gas: ~1426)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_pass_when_c

omputer_returns_matching_fingerprint (gas: ~1373)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_call_loan_c

ontract_with_loan_terms (gas: ~1490)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_return_used_cred

it (gas: ~1186)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_revoke_nonce (ga

s: ~1196)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_caller

_is_not_proposer (gas: ~1137)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_return_proposal_

hash (gas: ~1126)

Page 28

PWN Finance Cairo

Security Review Report

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_emit_proposal_ma

de (gas: ~1202)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_make_proposal (g

as: ~1197)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_return_encoded_p

roposal_data (gas: ~1133)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_return_decoded_p

roposal_data (gas: ~1139)

[PASS] tests::unit::revoked_nonce_test::is_nonce_revoked::test_fuzz_should_return_st

ored_value (runs: 256, gas: {max: ~460, min: ~396, mean: ~429.00, std deviation

: ~31.98})

[PASS] tests::unit::revoked_nonce_test::revoke_nonces::test_fuzz_should_store_nonces

_as_revoked (runs: 256, gas: {max: ~666, min: ~602, mean: ~665.00, std deviatio

n: ~4.06})

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_make_propos

al (gas: ~1198)

[PASS] tests::unit::revoked_nonce_test::is_nonce_usable::test_fuzz_should_return_fal

se_when_nonce_space_is_not_equal_to_current_nonce_space (runs: 256, gas: {max:

~460, min: ~396, mean: ~459.00, std deviation: ~4.06})

[PASS] tests::unit::revoked_nonce_test::is_nonce_usable::test_fuzz_should_return_fal

se_when_nonce_is_revoked (runs: 256, gas: {max: ~458, min: ~458, mean: ~458.00,

std deviation: ~0.00})

[PASS] tests::unit::multitoken_category_registry_test::unregister_category_value::te

st_fuzz_should_emit_CategoryUnregistered (runs: 256, gas: {max: ~170, min: ~170

, mean: ~170.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_refina

ncing_loan_ids_is_not_equal_when_proposed_refinancing_loan_id_not_zero_when_ref

inancing_loan_id_not_zero_when_offer (gas: ~1221)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_return_enco

ded_proposal_data (gas: ~1135)

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_nonce_space::test_fuzz_sho

uld_fail_when_nonce_already_revoked (runs: 256, gas: {max: ~587, min: ~527, mea

n: ~586.00, std deviation: ~5.27})

[PASS] tests::unit::revoked_nonce_test::is_nonce_usable::test_fuzz_should_return_tru

e_when_nonce_space_is_equal_to_current_nonce_space_when_nonce_is_not_revoked (r

uns: 256, gas: {max: ~460, min: ~396, mean: ~459.00, std deviation: ~4.06})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_nonce_space::test_fuzz_sho

uld_store_nonce_as_revoked (runs: 256, gas: {max: ~465, min: ~465, mean: ~465.0

0, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_pass_when_refina

ncing_loan_ids_not_equal_when_proposed_refinancing_loan_id_zero_when_refinancin

g_loan_id_not_zero_when_offer (gas: ~1296)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_return_deco

ded_proposal_data (gas: ~1141)

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_space::test_fuzz_should_increme

nt_current_nonce_space (runs: 256, gas: {max: ~465, min: ~401, mean: ~464.00, s

td deviation: ~4.06})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_nonce_space::test_fuzz_sho

uld_emit_nonce_revoked (runs: 256, gas: {max: ~464, min: ~464, mean: ~464.00, s

td deviation: ~0.00})

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_offer_

nonce_not_usable (gas: ~1237)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_increase_used_cr

edit_when_used_credit_not_exceeds_available_credit_limit (gas: ~1296)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_propos

al_expired (gas: ~1225)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_used_c

redit_exceeds_available_credit_limit (gas: ~1230)

Page 29

PWN Finance Cairo

Security Review Report

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_revoke_offer_whe

n_available_credit_limit_equal_to_zero (gas: ~1301)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_comput

er_registry_returns_computer_when_computer_returns_different_state_fingerprint

(gas: ~1420)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_caller

_is_not_allowed_acceptor (gas: ~1240)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_call_loan_contra

ct_with_loan_terms (gas: ~1480)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_revoke_nonce (gas: ~

1196)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_return_used_credit (

gas: ~1186)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_return_proposal_hash

(gas: ~1126)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_pass_when_comput

er_returns_matching_fingerprint (gas: ~1369)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_emit_proposal_made (

gas: ~1202)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_make_proposal (gas:

~1197)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_caller_is_

not_proposer (gas: ~1137)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_return_encoded_propo

sal_data (gas: ~1134)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_accept_any_collatera

l_id_when_merkle_root_is_zero (gas: ~1296)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_return_decoded_propo

sal_data (gas: ~1140)

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_space::test_fuzz_should_emit_no

nce_space_revoked (runs: 256, gas: {max: ~465, min: ~401, mean: ~464.00, std de

viation: ~4.06})

[PASS] tests::unit::revoked_nonce_test::current_nonce_space::test_fuzz_should_return

_current_nonce_space (runs: 256, gas: {max: ~460, min: ~396, mean: ~459.00, std

deviation: ~4.06})

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_refina

ncing_loan_ids_not_equal_when_refinancing_loan_id_not_zero_when_request (gas: ~

1222)

[PASS] tests::unit::config_test::set_default_loan_metadata_uri::test_should_fail_whe

n_caller_is_not_owner (gas: ~366)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_pass_when_computer_r

eturns_matching_fingerprint (gas: ~1369)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_return_used_credit

(gas: ~1186)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_call_loan_contract_w

ith_loan_terms (gas: ~1477)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_proposal

_expired (gas: ~1218)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_return_proposal_ha

sh (gas: ~1126)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_offer_no

nce_not_usable (gas: ~1230)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_revoke_nonce (gas:

~1196)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_caller_i

s_not_proposer (gas: ~1137)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_caller_i

s_not_allowed_acceptor (gas: ~1233)

Page 30

PWN Finance Cairo

Security Review Report

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_make_proposal (gas

: ~1197)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_emit_proposal_made

(gas: ~1202)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_revoke_offer_when_

available_credit_limit_equal_to_zero (gas: ~1294)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_increase_used_cred

it_when_used_credit_not_exceeds_available_credit_limit (gas: ~1286)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_return_encoded_pro

posal_data (gas: ~1127)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_computer

_registry_returns_computer_when_computer_returns_different_state_fingerprint (g

as: ~1405)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_pass_when_computer

_returns_matching_fingerprint (gas: ~1362)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_used_cre

dit_exceeds_available_credit_limit (gas: ~1220)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_return_decoded_pro

posal_data (gas: ~1132)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_caller_i

s_not_proposed_loan_contract (gas: ~1232)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_caller_n

ot_tagged_active_loan (gas: ~1220)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_proposer

_is_same_as_acceptor (gas: ~1221)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_proposed

_refinancing_loan_id_not_zero_when_refinancing_loan_id_zero (gas: ~1214)

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_return_proposal_ha

sh_and_loan_terms (gas: ~1460)

[PASS] tests::unit::simple_loan_test::get_lender_spec_hash::test_should_return_lende

r_spec_hash (gas: ~5175)

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_space::test_fuzz_should_return_

new_nonce_space (runs: 256, gas: {max: ~463, min: ~399, mean: ~462.00, std devi

ation: ~4.06})

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_refinanc

ing_loan_ids_is_not_equal_when_proposed_refinancing_loan_id_not_zero_when_refin

ancing_loan_id_not_zero_when_offer (gas: ~1214)

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_fail_when_propos

al_contract_not_tagged_loan_proposal (runs: 256, gas: {max: ~5219, min: ~5206,

mean: ~5218.00, std deviation: ~1.25})

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_pass_when_refinanc

ing_loan_ids_not_equal_when_proposed_refinancing_loan_id_zero_when_refinancing_

loan_id_not_zero_when_offer (gas: ~1289)

[PASS] tests::unit::simple_loan_test::create_loan::test_should_fail_when_pool_adapte

r_not_registered_when_pool_source_of_funds (gas: ~6120)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_i

nvalid_auction_duration (gas: ~1125)

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_owner::test_fuzz_should_fa

il_when_nonce_already_revoked (runs: 256, gas: {max: ~771, min: ~592, mean: ~76

8.00, std deviation: ~14.51})

[PASS] tests::unit::LOAN_test::test_should_return_loan_id (gas: ~818)

[PASS] tests::unit::simple_loan_test::create_loan::test_should_emit_loan_created (ga

s: ~6148)

[PASS] tests::unit::LOAN_test::test_should_emit_event_loan_minted (gas: ~821)

[PASS] tests::unit::simple_loan_test::refinance_loan::test_should_fail_when_refinanc

ing_disabled (gas: ~6957)

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_return_new_loan_

id (runs: 256, gas: {max: ~5872, min: ~5872, mean: ~5872.00, std deviation: ~0.

Page 31

PWN Finance Cairo

Security Review Report

00})

[PASS] tests::unit::simple_loan_test::repay_loan::test_should_fail_when_loan_does_no

t_exist (gas: ~5970)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_zero_m

in_collateral_amount (gas: ~1217)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_collat

eral_amount_less_than_min_collateral_amount (gas: ~1221)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_propos

ed_refinancing_loan_id_not_zero_when_refinancing_loan_id_zero (gas: ~1221)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_fuzz_should_return_cred

it_amount (runs: 256, gas: {max: ~1123, min: ~1123, mean: ~1123.00, std deviati

on: ~0.00})

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_propos

er_is_same_as_acceptor (gas: ~1228)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_caller

_is_not_proposed_loan_contract (gas: ~1246)

[PASS] tests::unit::simple_loan_fungible_proposal_test::test_should_fail_when_caller

_not_tagged_active_loan (gas: ~1234)

[PASS] tests::unit::simple_loan_test::repay_loan::test_fuzz_should_fail_when_loan_is

_not_running (runs: 256, gas: {max: ~6034, min: ~6034, mean: ~6034.00, std devi

ation: ~0.00})

[PASS] tests::unit::simple_loan_test::repay_loan::test_should_fail_when_loan_is_defa

ulted (gas: ~6033)

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_emit_loan_claimed_when

_repaid (gas: ~5180)

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_emit_loan_claimed_when

_defaulted (gas: ~5187)

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_owner::test_fuzz_should_st

ore_nonce_as_revoked (runs: 256, gas: {max: ~601, min: ~537, mean: ~600.00, std

deviation: ~4.06})

[PASS] tests::unit::simple_loan_test::claim_loan::test_fuzz_should_fail_when_caller_

is_not_loan_token_holder (runs: 256, gas: {max: ~6033, min: ~6033, mean: ~6033.

00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_fail_when_loan_does_no

t_exist (gas: ~5973)

[PASS] tests::unit::multitoken_category_registry_test::registered_category_value::te

st_fuzz_should_return_category_not_registered_when_not_registered (runs: 256, g

as: {max: ~167, min: ~167, mean: ~167.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_fail_when_loan_is_not_

repaid_nor_expired (gas: ~6038)

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_pass_when_loan_is_defa

ulted (gas: ~5182)

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_pass_when_loan_is_repa

id (gas: ~5175)

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_delete_loan_data (gas:

~5180)

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_burn_loan_token (gas:

~5176)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_pass_when_given_coll

ateral_id_is_whitelisted (runs: 256, gas: {max: ~5509, min: ~5499, mean: ~5508.

00, std deviation: ~1.19})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_owner::test_fuzz_should_em

it_nonce_revoked (runs: 256, gas: {max: ~600, min: ~536, mean: ~599.00, std dev

iation: ~4.06})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_nonce_space_and_owner::tes

t_fuzz_should_fail_when_caller_does_not_have_access_tag (runs: 256, gas: {max:

~483, min: ~452, mean: ~482.00, std deviation: ~2.07})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_nonce_space_and_owner::tes

Page 32

PWN Finance Cairo

Security Review Report

t_fuzz_should_fail_when_nonce_already_revoked (runs: 256, gas: {max: ~676, min:

~616, mean: ~674.00, std deviation: ~5.61})

[PASS] tests::unit::multitoken_library_test::test_fuzz_should_return_erc20 (runs: 25

6, gas: {max: ~1, min: ~1, mean: ~1.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::claim_loan::test_fuzz_should_transfer_repaid_a

mount_to_lender_when_loan_is_repaid (runs: 256, gas: {max: ~5194, min: ~5194, m

ean: ~5194.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::claim_loan::test_should_transfer_collateral_to

_lender_when_loan_is_defaulted (gas: ~5187)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_caller_not

_tagged_active_loan (gas: ~1231)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_proposer_i

s_same_as_acceptor (gas: ~1228)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_caller_is_

not_proposed_loan_contract (gas: ~1243)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_proposed_r

efinancing_loan_id_not_zero_when_refinancing_loan_id_zero (gas: ~1222)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_refinancin

g_loan_ids_is_not_equal_when_proposed_refinancing_loan_id_not_zero_when_refinan

cing_loan_id_not_zero_when_offer (gas: ~1222)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_offer_nonc

e_not_usable (gas: ~1238)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_proposal_e

xpired (gas: ~1225)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_caller_is_

not_allowed_acceptor (gas: ~1240)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_given_coll

ateral_id_is_not_whitelisted (runs: 256, gas: {max: ~5464, min: ~5430, mean: ~5

463.00, std deviation: ~2.20})

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_revoke_offer_when_av

ailable_credit_limit_equal_to_zero (gas: ~1301)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_refinancin

g_loan_ids_not_equal_when_refinancing_loan_id_not_zero_when_request (gas: ~1222

)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_pass_when_refinancin

g_loan_ids_not_equal_when_proposed_refinancing_loan_id_zero_when_refinancing_lo

an_id_not_zero_when_offer (gas: ~1296)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_increase_used_credit

_when_used_credit_not_exceeds_available_credit_limit (gas: ~1293)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_used_credi

t_exceeds_available_credit_limit (gas: ~1228)

[PASS] tests::unit::simple_loan_list_proposal_test::test_should_fail_when_computer_r

egistry_returns_computer_when_computer_returns_different_state_fingerprint (gas

: ~1417)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_fail_when_t

ransfer_fails_when_source_of_funds_equal_to_original_lender (gas: ~5821)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_fail_when_t

ransfer_fails_when_source_of_funds_not_equal_to_original_lender (gas: ~5823)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_proposal_ex

pirated (gas: ~5968)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_emit_loan_c

laimed (gas: ~5891)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_call_supply

_on_pool_adapter_when_source_of_funds_not_equal_to_original_lender (gas: ~5906)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_offer_nonce

_not_usable (gas: ~5995)

[PASS] tests::unit::simple_loan_test::repay_loan::test_fuzz_should_update_loan_data_

when_loan_owner_is_not_original_lender (runs: 256, gas: {max: ~6367, min: ~6303

Page 33

PWN Finance Cairo

Security Review Report

, mean: ~6364.00, std deviation: ~13.53})

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_fuzz_should_not_pr

oceed_when_loan_not_in_repaid_state (runs: 256, gas: {max: ~6765, min: ~6701, m

ean: ~6744.00, std deviation: ~29.77})

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_caller_is_n

ot_borrower_nor_loan_owner (gas: ~5939)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_burn_loan_t

oken (gas: ~5887)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_fuzz_should_not_pr

oceed_when_original_lender_not_equal_to_loan_owner (runs: 256, gas: {max: ~6760

, min: ~6760, mean: ~6760.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_fail_when_p

ool_adapter_not_registered_when_source_of_funds_not_equal_to_original_lender (g

as: ~5891)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_delete_loan

_data (gas: ~5898)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_transfer_to

_original_lender_when_source_of_funds_equal_to_original_lender (gas: ~5896)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_transfer_am

ount_to_pool_adapter_when_source_of_funds_not_equal_to_original_lender (gas: ~5

906)

[PASS] tests::unit::simple_loan_test::try_claim_repaid_loan::test_should_not_call_tr

ansfer_when_credit_amount_is_zero (gas: ~5883)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_caller_is_b

orrower_and_proposer_is_not_loan_owner (gas: ~6022)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_caller_is_l

oan_owner_and_proposer_is_not_borrower (gas: ~6022)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_not_transfer_credit_w

hen_amount_zero (gas: ~6050)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_extension_d

uration_more_than_max (gas: ~5973)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_invalid_com

pensation_asset (gas: ~6061)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_revoke_extension_nonc

e (gas: ~6047)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_extension_d

uration_less_than_min (gas: ~5972)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_not_transfer_credit_w

hen_address_zero (gas: ~6050)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_transfer_compensation

_when_defined (gas: ~5954)

[PASS] tests::unit::multitoken_library_test::test_fuzz_should_return_erc721 (runs: 2

56, gas: {max: ~1, min: ~1, mean: ~1.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_revoke_callers_n

once_when_flag_is_true (runs: 256, gas: {max: ~6214, min: ~6214, mean: ~6214.00

, std deviation: ~0.00})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_nonce_space_and_owner::tes

t_fuzz_should_store_nonce_as_revoked (runs: 256, gas: {max: ~536, min: ~536, me

an: ~536.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_simple_proposal_test::test_should_fail_when_refinanc

ing_loan_ids_not_equal_when_refinancing_loan_id_not_zero_when_request (gas: ~12

14)

[PASS] tests::unit::simple_loan_test::get_loan::test_should_return_correct_status (g

as: ~6081)

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_call_withdraw_wh

en_pool_source_of_funds (runs: 256, gas: {max: ~6229, min: ~6101, mean: ~6226.0

0, std deviation: ~19.36})

[PASS] tests::unit::simple_loan_test::make_extension_proposal::test_fuzz_should_fail

Page 34

PWN Finance Cairo

Security Review Report

_when_caller_not_proposer (runs: 256, gas: {max: ~5218, min: ~5205, mean: ~5217

.00, std deviation: ~1.23})

[PASS] tests::unit::multitoken_library_test::test_fuzz_should_return_erc1155 (runs:

256, gas: {max: ~1, min: ~1, mean: ~1.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::get_loan::test_should_return_empty_loan_data_f

or_non_existing_loan (gas: ~5192)

[PASS] tests::unit::simple_loan_test::get_state_fingerprint::test_should_return_zero

_if_loan_does_not_exist (gas: ~5180)

[PASS] tests::unit::simple_loan_test::loan_metadata_uri::test_should_return_correct_

value (gas: ~5184)

[PASS] tests::unit::simple_loan_test::get_state_fingerprint::test_should_update_stat

e_fingerprint_when_loan_defaulted (gas: ~5911)

[PASS] tests::unit::revoked_nonce_test::revoke_nonces::test_fuzz_should_emit_nonce_r

evoked (runs: 256, gas: {max: ~670, min: ~606, mean: ~669.00, std deviation: ~4

.06})

[PASS] tests::unit::vault_test::pwn_vault_withdraw_from_pool_test::test_should_call_

withdraw_on_pool_adapter (gas: ~1513)

[PASS] tests::unit::vault_test::pwn_vault_push_from_test::test_should_fail_when_inco

mplete_transaction (gas: ~1502)

[PASS] tests::unit::vault_test::pwn_vault_push_from_test::test_should_call_safe_tran

sfer_from_from_origin_to_beneficiary (gas: ~1670)

[PASS] tests::unit::vault_test::pwn_vault_push_test::test_should_fail_when_incomplet

e_transaction (gas: ~1273)

[PASS] tests::unit::vault_test::pwn_vault_withdraw_from_pool_test::test_should_fail_

when_incomplete_transaction (gas: ~1415)

[PASS] tests::unit::vault_test::pwn_vault_supply_to_pool_test::test_should_transfer_

asset_to_pool_adapter (gas: ~1435)

[PASS] tests::unit::vault_test::pwn_vault_supply_to_pool_test::test_should_fail_when

_incomplete_transaction (gas: ~1417)

[PASS] tests::integration::protocol_integrity_test::test_should_fail_to_create_loan_

when_loan_contract_not_active (gas: ~5994)

[PASS] tests::unit::vault_test::pwn_vault_pull_test::test_should_call_transfer_from_

from_origin_to_vault (gas: ~1432)

[PASS] tests::unit::vault_test::pwn_vault_push_test::test_should_call_safe_transfer_

from_from_vault_to_beneficiary (gas: ~1432)

[PASS] tests::unit::vault_test::pwn_vault_pull_test::test_should_fail_when_incomplet

e_transaction (gas: ~1273)

[PASS] tests::unit::simple_loan_test::get_state_fingerprint::test_fuzz_should_return

_correct_state_fingerprint (runs: 256, gas: {max: ~6023, min: ~5895, mean: ~602

2.00, std deviation: ~8.92})

[PASS] tests::integration::simple_loan_integration_test::test_should_create_loan_fro

m_fungible_proposal (gas: ~7763)

[PASS] tests::integration::protocol_integrity_test::test_should_fail_to_create_loan_

terms_when_caller_is_not_active_loan (gas: ~6002)

[PASS] tests::integration::simple_loan_integration_test::test_should_create_loan_fro

m_list_proposal (gas: ~1)

[PASS] tests::integration::protocol_integrity_test::test_should_claim_repaid_loan_wh

en_loan_contract_not_active (gas: ~6679)

[PASS] tests::integration::protocol_integrity_test::test_should_fail_to_create_loan_

when_passing_invalid_terms_factory_contract (gas: ~6418)

[PASS] tests::integration::simple_loan_integration_test::test_should_create_loan_fro

m_simple_proposal (gas: ~7563)

[PASS] tests::integration::simple_loan_integration_test::test_should_create_loan_wit

h_erc721_collateral (gas: ~7487)

[PASS] tests::integration::simple_loan_integration_test::test_should_create_loan_wit

h_erc20_collateral (gas: ~7433)

[PASS] tests::integration::simple_loan_integration_test::test_should_create_loan_wit

h_erc1155_collateral (gas: ~7561)

Page 35

PWN Finance Cairo

Security Review Report

[PASS] tests::integration::simple_loan_integration_test::test_should_create_loan_fro

m_dutch_auction_proposal (gas: ~7772)

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_not_revoke_calle

rs_nonce_when_flag_is_false (runs: 256, gas: {max: ~6144, min: ~6144, mean: ~61

44.00, std deviation: ~0.00})

[PASS] tests::integration::protocol_integrity_test::test_should_repay_loan_when_loan

_contract_not_active_when_original_lender_is_not_loan_owner (gas: ~7590)

[PASS] tests::integration::simple_loan_integration_test::test_should_claim_defaulted

_loan (gas: ~6648)

[PASS] tests::unit::simple_loan_test::make_extension_proposal::test_should_emit_exte

nsion_proposal_made (gas: ~5248)

[PASS] tests::integration::simple_loan_integration_test::test_should_fail_to_repay_l

oan_when_loan_expired (gas: ~7629)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_loan_does_n

ot_exist (gas: ~5254)

[PASS] tests::unit::multitoken_library_test::test_should_fail_when_erc20_when_source

_is_this_when_call_to_non_contract_address (gas: ~3)

[PASS] tests::unit::simple_loan_test::make_extension_proposal::test_should_store_mad

e_flag (gas: ~5246)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_fail_when_loan_is_rep

aid (gas: ~5963)

[PASS] tests::unit::multitoken_library_test::test_should_call_transfer_when_erc20_wh

en_source_is_this (gas: ~1218)

[PASS] tests::unit::simple_loan_test::extend_loan::test_should_update_loan_data (gas

: ~6109)

[PASS] tests::unit::multitoken_library_test::test_should_fail_when_erc20_when_source

_is_this_when_transfer_returns_fale (gas: ~1075)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_c

urrent_auction_credit_amount_not_in_intended_credit_amount_range_when_offer (ga

s: ~1229)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_a

uction_duration_not_in_full_minutes (gas: ~1124)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_i

nvalid_credit_amount_range (gas: ~1127)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_p

roposal_expired (gas: ~1125)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_a

uction_not_in_progress (gas: ~1125)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_return_corr

ect_edge_values (gas: ~1151)

[PASS] tests::integration::simple_loan_integration_test::test_should_claim_repaid_lo

an_when_original_lender_is_not_loan_owner (gas: ~6739)

[PASS] tests::unit::multitoken_library_test::test_should_call_transfer_when_erc20_wh

en_source_is_not_this (gas: ~1226)

[PASS] tests::unit::multitoken_library_test::test_should_fail_when_erc20_when_source

_is_not_this_when_transfer_returns_false (gas: ~1076)

[PASS] tests::unit::simple_loan_test::create_loan::test_should_not_fail_when_caller_

lender_when_lender_spec_hash_mismatch (gas: ~6140)

[PASS] tests::unit::simple_loan_test::create_loan::test_should_fail_when_invalid_col

lateral_asset (gas: ~5219)

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_fail_when_loan_t

erms_duration_less_than_min (runs: 256, gas: {max: ~5187, min: ~5187, mean: ~51

87.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::create_loan::test_should_fail_when_invalid_cre

dit_asset (gas: ~5218)

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_fail_when_loan_t

erms_interest_apr_out_of_bounds (runs: 256, gas: {max: ~5190, min: ~5189, mean:

~5189.00, std deviation: ~0.86})

Page 36

PWN Finance Cairo

Security Review Report

[PASS] tests::unit::simple_loan_test::repay_loan::test_fuzz_should_transfer_repaid_a

mount_to_vault (runs: 256, gas: {max: ~6366, min: ~6302, mean: ~6363.00, std de

viation: ~13.53})

[PASS] tests::unit::simple_loan_test::repay_loan::test_should_emit_loan_paid_back (g

as: ~6085)

[PASS] tests::unit::simple_loan_test::repay_loan::test_should_transfer_collateral_to

_borrower (gas: ~6082)

[PASS] tests::unit::simple_loan_test::loan_repayment_amount::test_should_return_zero

_when_loan_does_not_exist (gas: ~5180)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_p

roposer_is_same_as_acceptor (gas: ~1232)

[PASS] tests::unit::simple_loan_test::create_loan::test_should_transfer_collateral_f

rom_borrower_to_vault (gas: ~6146)

[PASS] tests::unit::simple_loan_test::create_loan::test_should_mint_loan_token (gas:

~6144)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_c

aller_not_tagged_active_loan (gas: ~1240)

[PASS] tests::unit::simple_loan_test::create_loan::test_should_store_loan_data (gas:

~6143)

[PASS] tests::unit::simple_loan_test::get_loan::test_fuzz_should_return_loan_token_o

wner (runs: 256, gas: {max: ~5903, min: ~5775, mean: ~5902.00, std deviation: ~

8.00})

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_c

aller_is_not_proposed_loan_contract (gas: ~1252)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_c

urrent_auction_credit_amount_not_in_intended_credit_amount_range_when_request (

gas: ~1229)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_r

efinancing_loan_ids_is_not_equal_when_proposed_refinancing_loan_id_not_zero_whe

n_refinancing_loan_id_not_zero_when_offer (gas: ~1226)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_r

efinancing_loan_ids_not_equal_when_refinancing_loan_id_not_zero_when_request (g

as: ~1229)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_pass_when_r

efinancing_loan_ids_not_equal_when_proposed_refinancing_loan_id_zero_when_refin

ancing_loan_id_not_zero_when_offer (gas: ~1300)

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_fuzz_should_return

_correct_credit_amount_when_request (runs: 256, gas: {max: ~1125, min: ~1125, m

ean: ~1125.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_should_fail_when_p

roposed_refinancing_loan_id_not_zero_when_refinancing_loan_id_zero (gas: ~1226)

[PASS] tests::unit::simple_loan_test::loan_repayment_amount::test_should_return_accr

ued_interest (gas: ~5981)

[PASS] tests::unit::simple_loan_test::get_loan::test_fuzz_should_return_repayment_am

ount (runs: 256, gas: {max: ~5978, min: ~5912, mean: ~5977.00, std deviation: ~

6.96})

[PASS] tests::unit::simple_loan_test::loan_repayment_amount::test_fuzz_should_return

_accrued_interest_when_non_zero_accrued_interest (runs: 256, gas: {max: ~6086,

min: ~5958, mean: ~6082.00, std deviation: ~15.17})

[PASS] tests::unit::simple_loan_dutch_auction_proposal_test::test_fuzz_should_return

_correct_credit_amount_when_offer (runs: 256, gas: {max: ~1125, min: ~1125, mea

n: ~1125.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::loan_repayment_amount::test_fuzz_should_return

_fixed_interest_when_zero_accrued_interest (runs: 256, gas: {max: ~6019, min: ~

5891, mean: ~6013.00, std deviation: ~18.81})

[PASS] tests::unit::revoked_nonce_test::revoke_nonce_with_nonce_space_and_owner::tes

t_fuzz_should_emit_nonce_revoked (runs: 256, gas: {max: ~535, min: ~535, mean:

~535.00, std deviation: ~0.00})

Page 37

PWN Finance Cairo

Security Review Report

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_fail_when_caller

_not_lender_when_lender_spec_hash_mismatch (runs: 256, gas: {max: ~5239, min: ~

5213, mean: ~5238.00, std deviation: ~1.82})

[PASS] tests::unit::multitoken_library_test::test_fuzz_should_return_erc1155_with_no

_amount (runs: 256, gas: {max: ~1, min: ~1, mean: ~1.00, std deviation: ~0.00})

[PASS] tests::unit::simple_loan_test::get_loan::test_fuzz_should_return_static_loan_

data (runs: 256, gas: {max: ~6291, min: ~6163, mean: ~6288.00, std deviation: ~

12.55})

[PASS] tests::unit::simple_loan_test::create_loan::test_fuzz_should_transfer_credit_

to_borrower_and_fee_collector (runs: 256, gas: {max: ~6500, min: ~6164, mean: ~

6478.00, std deviation: ~46.74})

Tests: 349 passed, 0 failed, 0 skipped, 9 ignored, 0 filtered out

Fuzzer seed: 3229876501507863689

Page 38

PWN Finance Cairo

Security Review Report

A | Disclaimers

The audit makes no statements or warranty about utility of the code, safety of the code, suitability of the

business model, regulatory regime for the business model, or any other statements about fitness of the

contracts to purpose, or their bug free status. The audit documentation is for discussion purpose

A.1 | Client Confidentiality

This document contains Client Confidential information and may not be copied without written per-

mission.

A.2 | Proprietary Information

The content of this document should be considered proprietary information. Extropy gives permission

to copy this report for the purposes of disseminating information within your organisation or any

regulatory agency.

Page 39

	Executive Summary
	Audit summary
	Audit scope
	Issues Summary
	Methodology
	Approach
	Audit Notes

	Findings
	[HIGH] Merkle data conversion skips bytes wrongly
	[MEDIUM] Proper management of accounts with privileges
	[MEDIUM] Usage of rebase tokens may alter the normal functioning of the protocol
	[LOW] Possibly empty reference contracts in simple loan
	[LOW] LOAN token receiver may be not able to handle tokens
	[LOW] Prevent protocol functionality by accepting loans immediately
	[LOW] Possibility to pollute a loan with dummy extension proposals
	[LOW] Missing checks on `credit_amount` and `available_credit_limit`
	[LOW] `proposal_data.len()` is only checked in fungible and dutch proposal types
	[LOW] `MAX_ACCRUING_INTEREST_APR` doesn't match the Solidity constant
	[LOW] Possibility to pollute the protocol with dummy proposals
	[LOW] Usage of OZ version with known issues
	[LOW] Span decomposition is missing checks in serialization
	[INFO] Optimize gas usage for loan minting
	[INFO] Duplicate code in loan token URI
	[INFO] Typos in code
	[INFO] Enumerate loan status options
	[INFO] Functions that could be replaced by a multicall
	[INFO] Documentation is inconsistent with the code
	[INFO] Unneeded access tag parameter
	[INFO] Missing unsupported category checks
	[INFO] Functions that do not change the contract state are not marked as view
	[INFO] `IERC721_METADATA_ID` interface not registered
	[INFO] Use default address
	[INFO] Duplicate Event Emission in PWNHub `set_tags` Function
	[INFO] Accruing interest calculation uses a magic number
	[INFO] Unneeded use of initializers
	[INFO] Math multiplication may panic
	[INFO] `abi_encoded_packed()` never used in the codebase
	[INFO] Add comments on how hashes are formed
	[INFO] Lock used library versions
	[INFO] Inconsistent documentation related to ERC721 token ownership

	Test Coverage
	Solidity tests

	Disclaimers
	Client Confidentiality
	Proprietary Information

